3.1.25 \(\int \frac {1}{(5-3 \cos (c+d x))^4} \, dx\) [25]

3.1.25.1 Optimal result
3.1.25.2 Mathematica [A] (verified)
3.1.25.3 Rubi [A] (verified)
3.1.25.4 Maple [A] (verified)
3.1.25.5 Fricas [A] (verification not implemented)
3.1.25.6 Sympy [C] (verification not implemented)
3.1.25.7 Maxima [A] (verification not implemented)
3.1.25.8 Giac [A] (verification not implemented)
3.1.25.9 Mupad [B] (verification not implemented)

3.1.25.1 Optimal result

Integrand size = 12, antiderivative size = 108 \[ \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx=\frac {385 x}{32768}+\frac {385 \arctan \left (\frac {\sin (c+d x)}{3-\cos (c+d x)}\right )}{16384 d}+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}+\frac {25 \sin (c+d x)}{512 d (5-3 \cos (c+d x))^2}+\frac {311 \sin (c+d x)}{8192 d (5-3 \cos (c+d x))} \]

output
385/32768*x+385/16384*arctan(sin(d*x+c)/(3-cos(d*x+c)))/d+1/16*sin(d*x+c)/ 
d/(5-3*cos(d*x+c))^3+25/512*sin(d*x+c)/d/(5-3*cos(d*x+c))^2+311/8192*sin(d 
*x+c)/d/(5-3*cos(d*x+c))
 
3.1.25.2 Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.61 \[ \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx=\frac {770 \arctan \left (2 \tan \left (\frac {1}{2} (c+d x)\right )\right )-\frac {9 (4883 \sin (c+d x)-2340 \sin (2 (c+d x))+311 \sin (3 (c+d x)))}{(-5+3 \cos (c+d x))^3}}{32768 d} \]

input
Integrate[(5 - 3*Cos[c + d*x])^(-4),x]
 
output
(770*ArcTan[2*Tan[(c + d*x)/2]] - (9*(4883*Sin[c + d*x] - 2340*Sin[2*(c + 
d*x)] + 311*Sin[3*(c + d*x)]))/(-5 + 3*Cos[c + d*x])^3)/(32768*d)
 
3.1.25.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.14, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.917, Rules used = {3042, 3143, 27, 3042, 3233, 25, 3042, 3233, 27, 3042, 3136}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (5-3 \sin \left (c+d x+\frac {\pi }{2}\right )\right )^4}dx\)

\(\Big \downarrow \) 3143

\(\displaystyle \frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}-\frac {1}{48} \int -\frac {3 (2 \cos (c+d x)+5)}{(5-3 \cos (c+d x))^3}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{16} \int \frac {2 \cos (c+d x)+5}{(5-3 \cos (c+d x))^3}dx+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{16} \int \frac {2 \sin \left (c+d x+\frac {\pi }{2}\right )+5}{\left (5-3 \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 3233

\(\displaystyle \frac {1}{16} \left (\frac {25 \sin (c+d x)}{32 d (5-3 \cos (c+d x))^2}-\frac {1}{32} \int -\frac {25 \cos (c+d x)+62}{(5-3 \cos (c+d x))^2}dx\right )+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{16} \left (\frac {1}{32} \int \frac {25 \cos (c+d x)+62}{(5-3 \cos (c+d x))^2}dx+\frac {25 \sin (c+d x)}{32 d (5-3 \cos (c+d x))^2}\right )+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{16} \left (\frac {1}{32} \int \frac {25 \sin \left (c+d x+\frac {\pi }{2}\right )+62}{\left (5-3 \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx+\frac {25 \sin (c+d x)}{32 d (5-3 \cos (c+d x))^2}\right )+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 3233

\(\displaystyle \frac {1}{16} \left (\frac {1}{32} \left (\frac {311 \sin (c+d x)}{16 d (5-3 \cos (c+d x))}-\frac {1}{16} \int -\frac {385}{5-3 \cos (c+d x)}dx\right )+\frac {25 \sin (c+d x)}{32 d (5-3 \cos (c+d x))^2}\right )+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{16} \left (\frac {1}{32} \left (\frac {385}{16} \int \frac {1}{5-3 \cos (c+d x)}dx+\frac {311 \sin (c+d x)}{16 d (5-3 \cos (c+d x))}\right )+\frac {25 \sin (c+d x)}{32 d (5-3 \cos (c+d x))^2}\right )+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{16} \left (\frac {1}{32} \left (\frac {385}{16} \int \frac {1}{5-3 \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {311 \sin (c+d x)}{16 d (5-3 \cos (c+d x))}\right )+\frac {25 \sin (c+d x)}{32 d (5-3 \cos (c+d x))^2}\right )+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

\(\Big \downarrow \) 3136

\(\displaystyle \frac {1}{16} \left (\frac {1}{32} \left (\frac {385}{16} \left (\frac {\arctan \left (\frac {\sin (c+d x)}{3-\cos (c+d x)}\right )}{2 d}+\frac {x}{4}\right )+\frac {311 \sin (c+d x)}{16 d (5-3 \cos (c+d x))}\right )+\frac {25 \sin (c+d x)}{32 d (5-3 \cos (c+d x))^2}\right )+\frac {\sin (c+d x)}{16 d (5-3 \cos (c+d x))^3}\)

input
Int[(5 - 3*Cos[c + d*x])^(-4),x]
 
output
Sin[c + d*x]/(16*d*(5 - 3*Cos[c + d*x])^3) + ((25*Sin[c + d*x])/(32*d*(5 - 
 3*Cos[c + d*x])^2) + ((385*(x/4 + ArcTan[Sin[c + d*x]/(3 - Cos[c + d*x])] 
/(2*d)))/16 + (311*Sin[c + d*x])/(16*d*(5 - 3*Cos[c + d*x])))/32)/16
 

3.1.25.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3136
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{q = Rt[ 
a^2 - b^2, 2]}, Simp[x/q, x] + Simp[(2/(d*q))*ArcTan[b*(Cos[c + d*x]/(a + q 
 + b*Sin[c + d*x]))], x]] /; FreeQ[{a, b, c, d}, x] && GtQ[a^2 - b^2, 0] && 
 PosQ[a]
 

rule 3143
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos 
[c + d*x]*((a + b*Sin[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 - b^2))), x] + Simp 
[1/((n + 1)*(a^2 - b^2))   Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n + 1) 
- b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3233
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + 
 f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*( 
m + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
 
3.1.25.4 Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.71

method result size
derivativedivides \(\frac {\frac {\frac {369 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{512}+\frac {117 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{256}+\frac {639 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8192}}{{\left (4 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}^{3}}+\frac {385 \arctan \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16384}}{d}\) \(77\)
default \(\frac {\frac {\frac {369 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{512}+\frac {117 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{256}+\frac {639 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8192}}{{\left (4 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}^{3}}+\frac {385 \arctan \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16384}}{d}\) \(77\)
risch \(\frac {i \left (10395 \,{\mathrm e}^{5 i \left (d x +c \right )}-86625 \,{\mathrm e}^{4 i \left (d x +c \right )}+239470 \,{\mathrm e}^{3 i \left (d x +c \right )}-218466 \,{\mathrm e}^{2 i \left (d x +c \right )}+73575 \,{\mathrm e}^{i \left (d x +c \right )}-8397\right )}{12288 d \left (3 \,{\mathrm e}^{2 i \left (d x +c \right )}-10 \,{\mathrm e}^{i \left (d x +c \right )}+3\right )^{3}}-\frac {385 i \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {1}{3}\right )}{32768 d}+\frac {385 i \ln \left ({\mathrm e}^{i \left (d x +c \right )}-3\right )}{32768 d}\) \(127\)
parallelrisch \(\frac {385 i \left (770-27 \cos \left (3 d x +3 c \right )-981 \cos \left (d x +c \right )+270 \cos \left (2 d x +2 c \right )\right ) \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-i\right )+385 i \left (27 \cos \left (3 d x +3 c \right )+981 \cos \left (d x +c \right )-270 \cos \left (2 d x +2 c \right )-770\right ) \ln \left (2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+i\right )-175788 \sin \left (d x +c \right )+84240 \sin \left (2 d x +2 c \right )-11196 \sin \left (3 d x +3 c \right )}{32768 d \left (27 \cos \left (3 d x +3 c \right )+981 \cos \left (d x +c \right )-270 \cos \left (2 d x +2 c \right )-770\right )}\) \(171\)

input
int(1/(5-3*cos(d*x+c))^4,x,method=_RETURNVERBOSE)
 
output
1/d*(8*(369/4096*tan(1/2*d*x+1/2*c)^5+117/2048*tan(1/2*d*x+1/2*c)^3+639/65 
536*tan(1/2*d*x+1/2*c))/(4*tan(1/2*d*x+1/2*c)^2+1)^3+385/16384*arctan(2*ta 
n(1/2*d*x+1/2*c)))
 
3.1.25.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.12 \[ \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx=-\frac {385 \, {\left (27 \, \cos \left (d x + c\right )^{3} - 135 \, \cos \left (d x + c\right )^{2} + 225 \, \cos \left (d x + c\right ) - 125\right )} \arctan \left (\frac {5 \, \cos \left (d x + c\right ) - 3}{4 \, \sin \left (d x + c\right )}\right ) + 36 \, {\left (311 \, \cos \left (d x + c\right )^{2} - 1170 \, \cos \left (d x + c\right ) + 1143\right )} \sin \left (d x + c\right )}{32768 \, {\left (27 \, d \cos \left (d x + c\right )^{3} - 135 \, d \cos \left (d x + c\right )^{2} + 225 \, d \cos \left (d x + c\right ) - 125 \, d\right )}} \]

input
integrate(1/(5-3*cos(d*x+c))^4,x, algorithm="fricas")
 
output
-1/32768*(385*(27*cos(d*x + c)^3 - 135*cos(d*x + c)^2 + 225*cos(d*x + c) - 
 125)*arctan(1/4*(5*cos(d*x + c) - 3)/sin(d*x + c)) + 36*(311*cos(d*x + c) 
^2 - 1170*cos(d*x + c) + 1143)*sin(d*x + c))/(27*d*cos(d*x + c)^3 - 135*d* 
cos(d*x + c)^2 + 225*d*cos(d*x + c) - 125*d)
 
3.1.25.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.85 (sec) , antiderivative size = 597, normalized size of antiderivative = 5.53 \[ \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx=\begin {cases} \frac {x}{\left (5 - 3 \cosh {\left (2 \operatorname {atanh}{\left (\frac {1}{2} \right )} \right )}\right )^{4}} & \text {for}\: c = - d x - 2 i \operatorname {atanh}{\left (\frac {1}{2} \right )} \vee c = - d x + 2 i \operatorname {atanh}{\left (\frac {1}{2} \right )} \\\frac {x}{\left (5 - 3 \cos {\left (c \right )}\right )^{4}} & \text {for}\: d = 0 \\\frac {24640 \left (\operatorname {atan}{\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )} + \pi \left \lfloor {\frac {\frac {c}{2} + \frac {d x}{2} - \frac {\pi }{2}}{\pi }}\right \rfloor \right ) \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{1048576 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 786432 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 196608 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 16384 d} + \frac {18480 \left (\operatorname {atan}{\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )} + \pi \left \lfloor {\frac {\frac {c}{2} + \frac {d x}{2} - \frac {\pi }{2}}{\pi }}\right \rfloor \right ) \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{1048576 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 786432 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 196608 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 16384 d} + \frac {4620 \left (\operatorname {atan}{\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )} + \pi \left \lfloor {\frac {\frac {c}{2} + \frac {d x}{2} - \frac {\pi }{2}}{\pi }}\right \rfloor \right ) \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{1048576 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 786432 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 196608 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 16384 d} + \frac {385 \left (\operatorname {atan}{\left (2 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} \right )} + \pi \left \lfloor {\frac {\frac {c}{2} + \frac {d x}{2} - \frac {\pi }{2}}{\pi }}\right \rfloor \right )}{1048576 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 786432 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 196608 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 16384 d} + \frac {11808 \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{1048576 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 786432 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 196608 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 16384 d} + \frac {7488 \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{1048576 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 786432 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 196608 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 16384 d} + \frac {1278 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{1048576 d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 786432 d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 196608 d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 16384 d} & \text {otherwise} \end {cases} \]

input
integrate(1/(5-3*cos(d*x+c))**4,x)
 
output
Piecewise((x/(5 - 3*cosh(2*atanh(1/2)))**4, Eq(c, -d*x - 2*I*atanh(1/2)) | 
 Eq(c, -d*x + 2*I*atanh(1/2))), (x/(5 - 3*cos(c))**4, Eq(d, 0)), (24640*(a 
tan(2*tan(c/2 + d*x/2)) + pi*floor((c/2 + d*x/2 - pi/2)/pi))*tan(c/2 + d*x 
/2)**6/(1048576*d*tan(c/2 + d*x/2)**6 + 786432*d*tan(c/2 + d*x/2)**4 + 196 
608*d*tan(c/2 + d*x/2)**2 + 16384*d) + 18480*(atan(2*tan(c/2 + d*x/2)) + p 
i*floor((c/2 + d*x/2 - pi/2)/pi))*tan(c/2 + d*x/2)**4/(1048576*d*tan(c/2 + 
 d*x/2)**6 + 786432*d*tan(c/2 + d*x/2)**4 + 196608*d*tan(c/2 + d*x/2)**2 + 
 16384*d) + 4620*(atan(2*tan(c/2 + d*x/2)) + pi*floor((c/2 + d*x/2 - pi/2) 
/pi))*tan(c/2 + d*x/2)**2/(1048576*d*tan(c/2 + d*x/2)**6 + 786432*d*tan(c/ 
2 + d*x/2)**4 + 196608*d*tan(c/2 + d*x/2)**2 + 16384*d) + 385*(atan(2*tan( 
c/2 + d*x/2)) + pi*floor((c/2 + d*x/2 - pi/2)/pi))/(1048576*d*tan(c/2 + d* 
x/2)**6 + 786432*d*tan(c/2 + d*x/2)**4 + 196608*d*tan(c/2 + d*x/2)**2 + 16 
384*d) + 11808*tan(c/2 + d*x/2)**5/(1048576*d*tan(c/2 + d*x/2)**6 + 786432 
*d*tan(c/2 + d*x/2)**4 + 196608*d*tan(c/2 + d*x/2)**2 + 16384*d) + 7488*ta 
n(c/2 + d*x/2)**3/(1048576*d*tan(c/2 + d*x/2)**6 + 786432*d*tan(c/2 + d*x/ 
2)**4 + 196608*d*tan(c/2 + d*x/2)**2 + 16384*d) + 1278*tan(c/2 + d*x/2)/(1 
048576*d*tan(c/2 + d*x/2)**6 + 786432*d*tan(c/2 + d*x/2)**4 + 196608*d*tan 
(c/2 + d*x/2)**2 + 16384*d), True))
 
3.1.25.7 Maxima [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.41 \[ \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx=\frac {\frac {18 \, {\left (\frac {71 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {416 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {656 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{\frac {12 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {48 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {64 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1} + 385 \, \arctan \left (\frac {2 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{16384 \, d} \]

input
integrate(1/(5-3*cos(d*x+c))^4,x, algorithm="maxima")
 
output
1/16384*(18*(71*sin(d*x + c)/(cos(d*x + c) + 1) + 416*sin(d*x + c)^3/(cos( 
d*x + c) + 1)^3 + 656*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/(12*sin(d*x + c 
)^2/(cos(d*x + c) + 1)^2 + 48*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 64*sin 
(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1) + 385*arctan(2*sin(d*x + c)/(cos(d*x 
 + c) + 1)))/d
 
3.1.25.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.83 \[ \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx=\frac {385 \, d x + 385 \, c + \frac {36 \, {\left (656 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 416 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 71 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (4 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}} - 770 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) - 3}\right )}{32768 \, d} \]

input
integrate(1/(5-3*cos(d*x+c))^4,x, algorithm="giac")
 
output
1/32768*(385*d*x + 385*c + 36*(656*tan(1/2*d*x + 1/2*c)^5 + 416*tan(1/2*d* 
x + 1/2*c)^3 + 71*tan(1/2*d*x + 1/2*c))/(4*tan(1/2*d*x + 1/2*c)^2 + 1)^3 - 
 770*arctan(sin(d*x + c)/(cos(d*x + c) - 3)))/d
 
3.1.25.9 Mupad [B] (verification not implemented)

Time = 15.63 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.90 \[ \int \frac {1}{(5-3 \cos (c+d x))^4} \, dx=\frac {385\,\mathrm {atan}\left (2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{16384\,d}-\frac {385\,\left (\mathrm {atan}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )-\frac {d\,x}{2}\right )}{16384\,d}+\frac {\frac {369\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{512}+\frac {117\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{256}+\frac {639\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8192}}{d\,{\left (4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^3} \]

input
int(1/(3*cos(c + d*x) - 5)^4,x)
 
output
(385*atan(2*tan(c/2 + (d*x)/2)))/(16384*d) - (385*(atan(tan(c/2 + (d*x)/2) 
) - (d*x)/2))/(16384*d) + ((639*tan(c/2 + (d*x)/2))/8192 + (117*tan(c/2 + 
(d*x)/2)^3)/256 + (369*tan(c/2 + (d*x)/2)^5)/512)/(d*(4*tan(c/2 + (d*x)/2) 
^2 + 1)^3)